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Abstract-In this study, thermocapillary convection in a two-dimensional rectangular cavity with an upper, 
deformable free surface has been studied numerically. A wide range of values of the Marangoni number, 
Ma, is considered for the low Prandtl number fluid (Pr = 0.01) with the aspect ratio (A = height/length) 
fixed to be 0.5. The present computational results show that the thermocapillary flow may undergo an 
oscillatory motion when the Marangoni number is larger than a certain critical value, with a frequency of 
oscillation. If the Marangoni number is less than this critical value, the steady thermocapillary convection 
is obtained. The critical Marangoni number for the appearance of the oscillatory flow increases as the 

capillary number decreases and the Biot number increases. 

1. INTRODUCTION 

THERMOCAPILLARY convection is a fluid motion 
induced by surface tension gradients on a liquid-gas 

interface arising from temperature gradients. It plays 
an important role in many technological and engin- 
eering science applications such as laser surface melt- 
ing, crystal growth from melt, migration of a droplet 
or a gas bubble, or coating, etc. The influence of 
thermocapillary convection becomes significant for 
small-scale systems or low-gravity environments. 

Experiments on thermocapillary convection in 
liquid bridges performed by Preisser et al. [ 11, Kamo- 

tani et al. [2], and Velten et al. [3] have shown that 
a steady thermocapillary flow may change into an 
oscillatory flow when a dimensionless parameter 
known as the Marangoni number exceeds a particular 
critical value, and the other parameters are kept fixed. 
Understanding of the nature of this change is still 
limited. Smith and Davis [4, 51 conducted a linear 
stability analysis of thermocapillary flow in a shallow 
cavity. They considered separately two flow insta- 
bilities : convective instability due to thermocapillary 
convection effect, and surface-wave instability caused 
by surface deformation. In their predictions, the sur- 
face-wave instability is dominant for systems with low 
Prandtl numbers. Carpenter and Homsy [6] employed 
a linear theory to investigate the instability of steady 
thermocapillary flow in a square cavity and found 
that the flow is stable up to Marangoni numbers sev- 
eral times larger than critical values experimentally 
observed in the bridges. In their analyses, the influ- 
ences of surface deformation and three-dimensional 
disturbances are not taken into account. Hadid and 
Roux [7] computed the thermocapillary flow in long 
horizontal cavities with a flat interface for fluids with 
low Prandtl numbers. For the Marangoni numbers 
they considered, the oscillatory flow was not 

predicted. As mentioned by Ostrach et al. [8] and 

Chen et al. [9] the oscillatory flow may be established 
through the effect of a liquid-gas interface defor- 

mation. Kazarinoff and Wilkowski [lo] have per- 
formed numerical calculations for a two-dimensional 

unsteady thermocapillary flow in an axially symmetric 
liquid bridge, taking into account surface defor- 
mation. Their results showed that the flow may bifur- 
cate from a steady state to unsteady motions. One 

may suspect that the oscillation of thermocapillary 
flow is a consequence of a complex coupling between 

the interface deformation and thermocapillary con- 
vection. 

In the present study, the thermocapillary con- 
vection in a rectangular cavity with surface defor- 
mation is investigated using a series of numerical com- 

putations. The numerical technique for integrating the 
time-dependent, nonlinear Navier-Stokes and energy 
equations is a modified version of that used by Chen 

et al. [l 11. In this scheme, a finite-difference method 
combined with a time-dependent boundary-fitted 
curvilinear coordinate system has been used. Our pur- 

pose is to attempt to demonstrate that the steady 
thermocapillary flow may begin to oscillate due to the 
influence of the free-surface deformation. The effects 
of Marangoni, capillary, and Biot numbers on the 
flow pattern are examined for the low Prandtl number 
fluid (Pr = 0.01) with the aspect ratio (height/length) 
fixed at 0.5. 

2. MATHEMATICAL FORMULATION 

The physical configuration consists of a rectangular 
cavity of length L and height H, as shown in Fig. 
1. It contains an incompressible Newtonian fluid of 
density p, dynamic viscosity p, kinematic viscosity v, 
specific heat c,, and thermal diffusivity X. The iso- 
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NOMENCLATURE 

A aspect ratio 
Bi Biot number 
CU capillary number 

1’1’ specific heat 
h location of the free surface 
H height ofcavity 

h, surface heat transfer coefficient 
L length of the cavity 
Mu Marangoni number 

P dimensionless pressure 
Pt. Prandtl number 
Re Reynolds number 
t dimensionless time 
T temperature 

T, temperature at X’ = L 

Ttl temperature at x’ = 0 
24 dimensionless horizontal velocity 
2; dimensionless vertical velocity 
V dimensionless volume of the liquid 

s dimensionless horizontal coordinate 
x’ horizontal coordinate 

J> dimensionless vertical coordinate 

I?! vertical coordinate. 

Greek symbols 
I thermal diffusivity 

1! surface-tension temperature coefficient 
0 dimensionless temperature 

t1 dynamic viscosity 
\, kinematic viscosity 

P density 
(T surface tension 

00 mean value of free surface 

* stream function 
U) vorticity. 

Subscripts 
X, J: derivative with respect to .x, J. 

thermal rigid side walls at x’ = 0 and x’ = L are 
differentially heated and are maintained at different 
fixed temperatures T,, and T,, respectively. The bot- 
tom rigid wall is thermally insulated, and the free 
surface is bounded by a passive gas of negligible den- 
sity and viscosity with temperature distribution 
f’(x) = T, + ( Th - TJx’/L. The surface tension is con- 
sidered as a linear function of temperature 

n(T) = a,,--r[T-(T,+T,)/2] (1) 

where cr,,, is the mean value of the surface tension 
and y is the rate of decrease of surface tension with 
temperature. 

We chose the scales for length, velocity, time, and 
pressure to be H, y(Th - T,)/p, ~~~~(T~ - T,), and 
y( T,, - T,)/H, respectively. The dimensionless tem- 
perature is defined by 

m m 
@=;5. 

h L 

By eliminating the pressure, the resulting dimen- 
sionless governing equations for the unsteady two- 
dimensional motion of the liquid are 

FIG. 1. Schematic diagram of the physical system. -Bi(l+h~)1~2~0-1/2+Ax]; y = h(t,x). (6a-d) 

Re(w,+uw,+vw,.) = (w,,+w,,) (2a) 

~~(~~+~~~+~~~) = (@,,,i-@,,,) (2b) 

--w = 4i/.X,fti,,. (2c) 

Here, the steam function II/ and vorticity w are defined 

by 

u=glr, 

u= -$\ 

w = 0,--y. 

The two dimensionless parameters which appear are 
the Reynolds and Marangoni numbers, given by 

Re = y(_T, - T,)H 

PV 

and 

Ma = Y(Th - TM -__ 
P” 

respectively. The Prandtl number is obtained from the 
quotient aware. The boundary conditions are 

II/ = 0, I*) = -$xY, 0 = 1; x = 0 (3a-c) 

II/ = 0, 0 = -II/.,.,> O=O; x= l/A (4a-c) 

$I = 0. (0 = -I&, 0, = 0; y = 0 (5a-c) 

-$x = ifi?,k +h, 

-P+2fl+h,2)--tIh,(~,,+h,~,,)-(~~~+h~~~~)l 
= Cum ‘h,,(l +!~f)-~!*(l -CuO) 

(1 -h:)o = (l+h:)““(O,+h,O,) 

-4h,ll/,Y,-2$.,(1 -hf) 

(O?, - O,h,) = 
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Equations (3)-(5) express the kinematic, no-slip, and 
thermal conditions, whereas (6a) is the kinematic con- 
dition on the free surface. Equations (6b, c) represent 
the shear and normal-stress balances at the free 
surface, respectively. The dimensional parameters 
appearing in boundary conditions are the capillary 
number, the Biot number and the aspect ratio, given 

by 

and 

A = H/L 

respectively, where h, is the surface heat transfer 
coefficient. 

The liquid volume remains constant for any instant 

s l/A 

h(t, x) dx = V 
0 

where Vis the dimensionless volume. To complete the 
problem, the type of contact by the free-surface at the 
solid wall must be specified. The contact conditions 
assume that the liquid sticks to the solid end walls 

h(t,O) = 1, h(t, l/A) = 1. (8) 

Equations (2)-(8) form the so-called unsteady 
thermo~apillary free boundary problem, where the 
location of the free surface is not known a priori, but 
is part of the overall solution. As the solutions of the 
previous time step are known, an instant solution of 
the velocity and temperature field can be determined 
from equation (2) and boundary conditions (3)-(6) 
by assigning a specific shape to the interface and dis- 
carding the normal-stress condition (6b). The normal- 
stress balance is used to check whether the interface 
shape is a proper solution. When the normal-stress 
balance cannot be satisfied, a new interface is selected 
to reduce the error. 

3. NUMERICAL PROCEDURE 4. RESULTS AND DISCUSSION 

The numerical technique used previously by Chen 
et al. [l l] to study unsteady thermocapillary con- 
vection in a rectangular cavity has been used to solve 
a system (2) with appropriate conditions. The finite- 
difference code is a generalization of the steady algo- 
rithm developed by Chen ef al. [12]. The code uses a 
time-dependent, boundary-fitted curvilinear coor- 
dinate system [ 131, having coordinate lines coincident 
with the surface boundary at any instant. In this 
approach, the time-dependent physical domain, 
because of the variation of interface, is always mapped 
onto the square computational domain which is fixed 
in time and space. Grid-stretching transformations 
have been employed to provide good resolution near 
the gas-liquid interface. The grid point locations in 

The numerical calculations were made in double- 
precision arithmetic on the National Central Uni- 
versity IBM 540 and HP 9000/730 workstations. Com- 
putations were performed for the cases in which the 
aspect ratio is 0.5 and the Prandtl number is 0.01. The 
range of Marangoni numbers considered here is from 
1 to 250. The time step used for the calculations was 
At = 0.4, and there were a total of 81 spatial mesh 
points in the x-direction and 61 in the y-direction. Test 
computations showed these to be sufficiently small to 
ensure accuracy and convergence. When the density 
of spatial mesh points was inadequate, the irregular 
streamline patterns were found near the cold wall for 
higher Ma. Based on the results of Chen et al. [12], 
this can be expected since the largest velocity gradient 

the computational domain are time-independent, but 
the corresponding points in the physical domain are 
time-dependent, because of the shape of the interface 
as a function of time. The stream-function equation is 
solved by the line-successive-overrelaxation (LSOR) 
method, while the vorticity and temperature equations 
are solved by the semi-implicit predictor-corrector- 
multiple-iteration (PCMI) technique. All spatial 
derivatives at the interior points are discretized using 
central-difference formulas with second-order accu- 
racy, and time derivatives are approximated using 
a thr~-point backward difference with second-order 
accuracy. A brief summary of our computational pro- 
cedure is as follows : 

(1) The steady-state solution for the particular 
values of Bi, Ca, A, Ma and Pr is selected as the initial 
state, and at t > 0, Ma is suddenly changed to the 
desired value. 

(2) Initial guesses for rl/, o, 0, and h at the beginning 
of a new time step are extrapolated from the values 
of the two previous time steps (with modification of 
the first time step). 

(3) The boundary-fitted curvilinear coordinate sys- 
tem has been generated numerically. 

(4) The PCMI method is used to integrate the 
differential equations for u and 0. 

(5) The $ equation is solved iteratively using the 
LSOR method. The iteration process is assumed to 
converge when the relative error of two successive 
iterations is less than lo-‘. 

(6) Steps (4)-(5) are repeated until the relative error 
of two successive iterations for o and 0 is less than 
lo-‘. 

(7) Check the normal-stress condition, and if it is 
not satisfactory, modify the interface shape to reduce 
the difference between the normal stress and the 
surface tension (see details in ref. [IO]). 

(8) Return to step (3) and repeat iteratively until all 
equations and boundary conditions are satisfied to a 
predetermined level of accuracy. 

(9) Return to step (2) for the next time step. 
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exists near the cold wall for Pr < I. For Cu = 0.01 
and Bi = 0. the difference in the critical Marangoni 
numbers calculated using grids of 8 1 x 6 I and 5 1 x 41 
is not very significant. For Ma = 15, the streamline 
pattern and the interface shape for 5 I x 41 grid points 
are irregular near the cold wall. On the contrary, the 
results for 81 x 61 do not show this behaviour. 

Our computation results show that the steady 
thermocapillary flows could be obtained only for 
Marangoni numbers below a certain critical value, 

Mu,, that depends on capillary and Biot numbers. 

When Mu > Ma,, the oscillatory flow is predicted. 

Figure 2 shows the time history of the maximum 

height, IL, of the free surface for Cu = 0.01 and 

Bi = 0 with four different Ma. For Ma < Ma, 
(Mu, = 2.15), the maximum height of the free surface 
oscillates and decays with time before it reaches equi- 
librium. As Mcr > Mu,, the gasliquid interface, the 

flow field, and the temperature field begin to oscillate 
for a fixed period after the initial transient period. 
From Fig. 2, it is obvious that the magnitude of free- 
surface deflection for the oscillating flow is amplified 
as Mu increases. The whole gas-liquid interface is 
oscillating like a standing wave. Figure 3 illustrates the 
interface shape for Ma = IO, Cu = 0.01 and Bi = 0 at 
three different times from a complete period. The 

(a) Ma = 2.0 
20 000 - 
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4 IIIIl; 

K 
=: 0 SO 100 I50 200 250 

I 3 20000 (C) Ma = 10 

c r 
10 000 

0 50 100 150 200 250 

Cd) Ma=25 

-“.27 OIM) 400 

1 

FIG. 2. The time history of h,,, for Ca = 0.01 and Bi = 0 
with four dkerent Ma. 

FIG. 4. The time history of G,,,,, and Thmax for Mu = 10, 
Ca=O.OlandBi=O. 

1 - 318.4 

FIG. 3. The surface deflection for Mn = IO. Cb = 0.01 and 
Bi = 0 at three different times comprising a complete period. 

maximum amplitude of the interface is at t = 35 I .2, 
and t = 342.4 is the minimum. The locations of the 

maximum and minimum heights of the interface 

always appear at the same positions in the x-co- 
ordinate. 

The time history of the maximum value of the 

stream function within the cavity, IclmaX, and the tem- 
perature at the maximum height of interface, Thmsx, 
for Mu = 10, Ca = 0.01 and Bi = 0 are illustrated in 
Fig. 4. From Fig. 2(c) and Fig. 4, we see that after the 
initial time period, the flow and temperature fields 
oscillate with the same period as the interface shape. 

Kamotani et al. [2] conjectured that the time-lag 
behaviour between the interface flow and the return 

flow near the bottom wall is the reason for the appear- 
ance of an oscillatory motion. The time lag only 

appears in the unsteady thermocapillary flow with a 
surface deformation [J I]. To demonstrate the time- 
lag behaviour of the oscillatory flow, the variation of 

h nldX> ti,,,, and ThInax for a complete period is illus- 
trated in Fig. 5. The present results show that time 
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1 -0.012 
3 
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-0.016 h/’ 
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FIG. 5. The variation of H,,,, tj,,,,,, and T,,,, for Mu = 10, Cu = 0.01 and Bi = 0 for a complete period. 

Ma = 3 

1-1 
0 0.1 0.2 0.3 0 0.1 0.2 0.3 

FIG. 6. The frequency-spectra plot for Cu = 0.01 and Bi = 0 with four different Mu. 

lags exist between h,,,, $,,,,,, and Thman. It is obvious 
that the time-lag between the interface flow and the 
return flow occurs in the present system for 
Ma > Mu,. Similar behaviours also are predicted by 
Chen et al. [l l] and Lai [14] who studied the unsteady 
thermocapillary motion caused by periodic time- 
dependent heating along the interface. 

The frequency-spectra plot for the h,,, is given in 
Fig. 6. For Ma = 2.2 just above Mu,, the main fre- 
quency is f,, = 0.042 with minor frequencies of 
fk = (2k+ l)f,. The noise signals for Mu < 10 are 
possibly generated by the truncation and round-off 
errors. The influence of the noise signal on the fre- 
quency-spectra plot decreases as Mu increases. Figure 

I shows the relationship between the main frequency 
and Marangoni number for Ca = 0.01 and Bi = 0. 

0.10 r 

FIG. 7. The main frequency vs Marangoni number for 
Cu = 0.01 and Bi = 0. 
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0 10 20 

Ma 

FIG. 8. The oscillatory amplitude vs Marangoni number for 
Cu = 0.01 and Bi = 0. 

The main frequency for Ma, < Ma < 6 increases with 
increasing Ma, until it reaches a maximum value 
around Ma = 6. The main frequency for Ma > 6 
decays slowly and approaches a constant with increas- 

ing Ma. Figure 8 demonstrates the effect of the 
Marangoni number on the oscillatory amplitude, AH, 
at the location of the maximum height. For 

Ma, < Ma < 6, the oscillatory amplitude increases 
linearly as Ma increases. When Ma > 6, the oscil- 
latory amplitude starts to increase slowly, and then 

approaches a constant as Ma continues to increase. 
We define the oscillatory speed, C, as the ratio of 
the oscillatory amplitude to the half period of the 
oscillatory. From Fig. 9, we can see that the oscillatory 

speed increases exponentially and then approaches a 
constant value when Ma increases. 

The influence of the capillary number, which 
governs the degree of the surface deformation, on the 
critical Marangoni number is shown in Fig. 10 for 

1000 
1 p’_Q__4--Q--¶Y 

Fro. 9. The oscillatory speed vs Marangoni number for 
Cu = 0.01 and Bi = 0. 

300 

c 

7 
I 

200 ‘I 

FIG. 10. The capillary number vs critical Marangoni number 
for Bi = 0. 

Bi = 0. In this figure, we can see that the thermo- 
capillary flow is destabilized by the surface defor- 
mation. The linear-theory results for zero aspect ratio 

[5] also show similar trends. The critical Marangoni 
number predicted by the present computations 

increases exponentially as the capillary number 

decreases. From this figure, we can conjecture that for 

Ca = 0 the oscillatory flow may not occur, or that the 
oscillatory thermocapillary flow will appear for much 

higher Mardngoni numbers. The oscillatory flow for 

the zero capillary number could not also be predicted 
in the earlier linear-stability analyses of Carpenter 
and Homsy [6]. The linear-theory results for the zero 
aspect ratio [4, 51 showed that for small Prandtl num- 
ber fluids, the interaction of the surface deformation 
and underlying bulk shear flow arc major reasons 

for the instability of the thermocapillary flow. It is 
obvious that the surface deformation is an important 
factor in causing the oscillation of the thermocapillary 
flow. The critical Marangoni number predicted by 
Smith and Davis [5] is Mu, = 1.9 for Pr = 0.01, 
Ca = 0.0001, and Bi = 0. Our computational results 
show that the critical Marangoni number is 

Ma, = 15.9 which is much higher than that predicted 
by Smith and Davis. But this can be expected since 
the flow may be stabilized by the viscosity effect due 

to the presence of the side wall. The effect of the order 
of the Biot numbers is also of interest. Figure 11 is a 
plot of Ma, vs Bi for Ccc = 0.0001. Obviously, the 
steady thermocapillary flow is stabilized by the heat 
transfer at the interface. The critical Marangoni num- 

ber increases as the Biot number increases. 

5. CONCLUSIONS 

Steady thermocapillary flows could not be 

obtained, and the oscillatory flows are predicted when 
the Marangoni number exceeds a certain critical 
value. When the Marangoni number is less than this 
critical value, the thermocapillary flow approaches a 
steady-state solution after initial transient behaviour. 
Time-lag behaviours between the velocity field, sur- 
face temperature variation, and surface deformation 

I I I I I I 
0 0.2 0.4 0.6 0.8 I.0 

Bi 

FIG. 11. The Biot number vs critical Marangoni number for 
Ca = 0.0001. 
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predicted by Chen et af. [l I] and Lai 1141 have also 
been observed in the present oscillatory flows. The 
oscillatory speed of the flows increases as the Maran- 
goni number increases. With further increases in the 
Marangoni number, the oscillatory speed almost 
approaches a constant value. The value of Mu, is 
strongly dependent on the degree of surface defor- 
mation and the heat convection between the interface 
and the ambient. The present computationa results 
are consistent with the results of Smith and Davis [5] 
in that the critical Marangoni number decreases as 
the capillary number increases. 

In the present analysis, the three-dimensional effect 
is not included and the contact condition at triple 
phase is restricted to the case in which the liquid sticks 
to the end walls. The motion of the interface for the 
present oscillatory flow is like a standing wave. The 
travelling-wave phenomenon is predicted by the linear- 
theory results for the zero aspect ratio [5]. This 
phenomenon may be obtained using the present code, 
as long as the contact angle is fixed at the liquid- 
solid-gas tri-junction. Of course, this must be verified 
by further computations which are currently under- 
way. 
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